Lihao LiuPh.D. Candidate Cambridge Image Analysis Group |
|
I am a Ph.D. candidate in Cambridge Image Analysis Group (CIA) and Centre for Mathematical Imaging in Healthcare (CMIH) at University of Cambridge. I am working with Carola-Bibiane Schönlieb and Angelica I. Aviles-Rivero, and Pietro Liò. Before that, I received my M.Phil. degree from Dept. of Computer Science and Engineering (CSE), Chinese University of Hong Kong, under the supervision of Prof. Pheng-Ann Heng, and my B.Eng. degree from Dept. of Software Engineering, Chongqing University.
My research interests include Medical Image Analysis and Video Understanding. Specifically, I focus on using Machine Learning techniques to solve unsupervised medical image registration and segmentation tasks. Besides, I am also working on surgical video processing, and video content understanding tasks.
TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios
Lihao Liu, Yanqi Cheng, Zhongying Deng, Shujun Wang, Dongdong Chen, Xiaowei Hu, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Arxiv Tech Report, 2023.
[paper] |
|
Traffic Video Object Detection using Motion Prior
Lihao Liu, Yanqi Cheng, Dongdong Chen, Jing He, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Arxiv Tech Report, 2023.
[paper] |
|
SCOTCH and SODA: A Transformer Video Shadow Detection Framework Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero. Computer Vision and Pattern Recognition (CVPR), 2023. | |
Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition through the Lens of Robustness Yanqi Cheng, Lihao Liu, Shujun Wang, Yueming Jin, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero. Trustworthy Machine Learning for Healthcare (ICLR-TML4H), 2023. | |
TrafficCAM: A Versatile Dataset for Traffic Flow Segmentation Zhongying Deng, Yanqi Chen, Lihao Liu, Shujun Wang, Rihuan Ke, Carola-Bibiane Schonlieb, and Angelica I Aviles-Rivero. Arxiv Tech Report, 2022. | |
PC-SwinMorph: Patch Representation for Unsupervised Medical Image Registration and Segmentation
Lihao Liu, Zhening Huang, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Major Revision at Medical Image Analysis. (MIA), 2023.
[paper] |
|
You Only Look at Patches: A Patch-wise Framework for 3D Unsupervised Medical Image Registration
Lihao Liu, Zhening Huang, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Biomedical Image Registration (WBIR), 2022.
[paper] |
|
MammoDG: Generalisable Deep Learning for Cross-Domain Multi-Center Breast Cancer Screening
Yijun Yang, Shujun Wang, Lihao Liu, Sarah Hickman, Fiona J Gilbert, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero.
Arxiv Tech Report, 2023.
[paper] |
|
CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting Simon Graham, Quoc Dang Vu, ..., Lihao Liu, Chengyang Hong, and et. al. Medical Image Analysis (MIA), 2023. | |
Simultaneous Semantic and Instance Segmentation for Colon Nuclei Identification and Counting
Lihao Liu, Chengyang Hong, Angelica I Aviles-Rivero, and Carola-Bibiane Schönlieb.
Medical Image Understanding and Analysis (MIUA), 2022.
[Merit NVIDIA Paper Award!] [Ranking 4/373 in the CoNIC-2022!] |
|
Learning Homeomorphic Image Registration via Conformal-Invariant Hyperelastic Regularisation
Jing Zou, Noémie Debroux, Lihao Liu, Jing Qin, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero.
Medical Image Analysis (MIA), 2023.
[paper] |
|
Deformable Lung CT Registration by Decomposing Large Deformation
Jing Zou, Lihao Liu, Youyi Song, Kup-Sze Choi, Jing Qin.
Biomedical Image Registration (WBIR), 2022.
[paper] |
|
Contrastive Registration for Unsupervised Medical Image Segmentation Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Schönlieb. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022. | |
Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-cortical Brain Structure Segmentation Lihao Liu, Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and Pheng-Ann Heng. IEEE Transactions on Medical Imaging (TMI), 2020. | |
Probabilistic Multilayer Regularization Network for Unsupervised 3D Brain Image Registration Lihao Liu, Xiaowei Hu, Lei Zhu, and Pheng-Ann Heng. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2019. | |
Multi-Task Deep Model with Margin Ranking Loss for Lung Nodule Analysis Lihao Liu, Qi Dou, Hao Chen, Jing Qin, and Pheng-Ann Heng. IEEE Transactions on Medical Imaging (TMI), 2019. | |
MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis Lihao Liu, Qi Dou, Hao Chen, Iyiola E. Olatunji, Jing Qin, and Pheng-Ann Heng. Deep Learning in Medical Image Analysis (MICCAI-DLMIA), 2018. | |
- 2019-2020 | Spring | CSCI2100 Data Structures |
- 2018-2019 | Fall | CSCI3160 Design and Analysis of Algorithms |
- 2017-2018 | Fall | CSCI3160 Design and Analysis of Algorithms |