Lihao LiuApplied Scientist Amazon, USA |
![]() |
I am an Applied Scientist at Amazon, USA. I obtain my Ph.D. degree from University of Cambridge, under the supervision of Carola-Bibiane Schönlieb and Angelica I. Aviles-Rivero, and Pietro Liò. Before that, I received my M.Phil. degree from Dept. of Computer Science and Engineering (CSE), The Chinese University of Hong Kong, under the supervision of Prof. Pheng-Ann Heng, and my B.Eng. degree from Dept. of Software Engineering, Chongqing University.
My research interests include LLM-based Agent and AI for Healthcare.
![]() |
Learning, Reasoning, Refinement: A Framework for Kahneman’s Dual-System Intelligence in GUI Agents
Jinjie Wei, Jiyao Liu, Lihao Liu, Ming Hu, Junzhi Ning, Mingcheng Li, Weijie Yin, Junjun He, Xiao Liang, Chao Feng, Dingkang Yang
Arxiv Tech Repor, 2025.
[paper] |
![]() |
Detect Any Mirrors: Boosting Learning Reliability on Large-Scale Unlabeled Data with an Iterative Data Engine
Zhaohu Xing, Lihao Liu, Yijun Yang, Hongqiu Wang, Tian Ye, Sixiang Chen, Wenxue Li, Guang Liu, and Lei Zhu
Computer Vision and Pattern Recognition (CVPR), 2025.
[paper] |
![]() |
SCOTCH and SODA: A Transformer Video Shadow Detection Framework Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero. Computer Vision and Pattern Recognition (CVPR), 2023. |
![]() |
Contrastive Registration for Unsupervised Medical Image Segmentation Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Schönlieb. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022. |
![]() |
Multi-Task Deep Model with Margin Ranking Loss for Lung Nodule Analysis Lihao Liu, Qi Dou, Hao Chen, Jing Qin, and Pheng-Ann Heng. IEEE Transactions on Medical Imaging (TMI), 2019. |
![]() |
Mamba4D: Efficient 4D Point Cloud Video Understanding with Disentangled Spatial-Temporal State Space Models Jiuming Liu, Jinru Han, Lihao Liu, Angelica I Aviles-Rivero, Chaokang Jiang, Zhe Liu, and Hesheng Wang Computer Vision and Pattern Recognition (CVPR), 2025. |
![]() |
TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios
Lihao Liu, Yanqi Cheng, Zhongying Deng, Shujun Wang, Dongdong Chen, Xiaowei Hu, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
ACM Multimedia (MM), 2024.
[paper] |
![]() |
Traffic Video Object Detection using Motion Prior
Lihao Liu, Yanqi Cheng, Dongdong Chen, Jing He, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Under Review at IEEE Transactions on Image Processing (TIP), 2024.
[paper] |
![]() |
TrafficCAM: A Versatile Dataset for Traffic Flow Segmentation Zhongying Deng, Yanqi Chen, Lihao Liu, Shujun Wang, Rihuan Ke, Carola-Bibiane Schonlieb, and Angelica I Aviles-Rivero. IEEE Transactions on Intelligent Transportation Systems (TITS), 2024. |
![]() |
Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition through the Lens of Robustness Yanqi Cheng, Lihao Liu, Shujun Wang, Yueming Jin, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero. Trustworthy Machine Learning for Healthcare (ICLR-TML4H), 2023. |
![]() |
PC-SwinMorph: Patch Representation for Unsupervised Medical Image Registration and Segmentation
Lihao Liu, Zhening Huang, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Major Revision at Medical Image Analysis. (MIA), 2023.
[paper] |
![]() |
You Only Look at Patches: A Patch-wise Framework for 3D Unsupervised Medical Image Registration
Lihao Liu, Zhening Huang, Pietro Liò, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero.
Biomedical Image Registration (WBIR), 2022.
[paper] |
![]() |
MammoDG: Generalisable Deep Learning for Cross-Domain Multi-Center Breast Cancer Screening
Yijun Yang, Shujun Wang, Lihao Liu, Sarah Hickman, Fiona J Gilbert, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero.
Under Review at International Journal of Computer Vision (IJCV), 2023.
[paper] |
![]() |
CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting Simon Graham, Quoc Dang Vu, ..., Lihao Liu, Chengyang Hong, and et. al. Medical Image Analysis (MIA), 2023. |
![]() |
Simultaneous Semantic and Instance Segmentation for Colon Nuclei Identification and Counting
Lihao Liu, Chengyang Hong, Angelica I Aviles-Rivero, and Carola-Bibiane Schönlieb.
Medical Image Understanding and Analysis (MIUA), 2022.
[Merit NVIDIA Paper Award!] [Ranking 4/373 in the CoNIC-2022!] |
![]() |
Learning Homeomorphic Image Registration via Conformal-Invariant Hyperelastic Regularisation
Jing Zou, Noémie Debroux, Lihao Liu, Jing Qin, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero.
Medical Image Analysis (MIA), 2023.
[paper] |
![]() |
Deformable Lung CT Registration by Decomposing Large Deformation
Jing Zou, Lihao Liu, Youyi Song, Kup-Sze Choi, Jing Qin.
Biomedical Image Registration (WBIR), 2022.
[paper] |
![]() |
Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-cortical Brain Structure Segmentation Lihao Liu, Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and Pheng-Ann Heng. IEEE Transactions on Medical Imaging (TMI), 2020. |
![]() |
Probabilistic Multilayer Regularization Network for Unsupervised 3D Brain Image Registration Lihao Liu, Xiaowei Hu, Lei Zhu, and Pheng-Ann Heng. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2019. |
![]() |
MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis Lihao Liu, Qi Dou, Hao Chen, Iyiola E. Olatunji, Jing Qin, and Pheng-Ann Heng. Deep Learning in Medical Image Analysis (MICCAI-DLMIA), 2018. |
- 2019-2020 | Spring | CSCI2100 Data Structures |
- 2018-2019 | Fall | CSCI3160 Design and Analysis of Algorithms |
- 2017-2018 | Fall | CSCI3160 Design and Analysis of Algorithms |